- a metal layer formed on said aluminum layer and made of any one material of tantalum, nickel, palladium, and molybdenum.
- 2. The semiconductor device according to claim 1, wherein said n-type semiconductor layer or said undoped semiconductor layer is a III-V group nitride compound semiconductor layer.
- 3. The semiconductor device according to claim 1, comprising a compound layer of any one material of tantalum, nickel, palladium, and molybdenum, and aluminum between said aluminum layer and said metal layer.
- **4.** The semiconductor device according to claim **1**, comprising an $Al_xGa_{1-x}N$ ($0 \le x \le 1$) layer as said n-type semiconductor layer or said undoped semiconductor layer and a source electrode and a drain electrode as said ohmic electrode, and being a field effect transistor having a gate electrode.
- 5. The semiconductor device according to claim 4, wherein:
 - said $Al_xGa_{1-x}N$ ($0 \le x \le 1$) layer is an $Al_xGa_{1-x}N$ ($0 \le x \le 1$) electron supply layer; and comprising:
 - a GaN electron transit layer formed below said $Al_xGa_{1-x}N$ ($0 \le x \le 1$) electron supply layer; and
 - a GaN layer formed between said gate electrode and said Al,Ga_{1-x}N (0≦x≦1) electron supply layer.
- **6.** The semiconductor device according to claim **5**, wherein said GaN layer is doped with n-type impurity materials of 1×10^{17} cm⁻³ or more.

- 7. The semiconductor device according to claim 5, further comprising a GaN layer below said source electrode and said drain electrode,
 - wherein said GaN layer is thinner in thickness at a portion below said source electrode and said drain electrode than at a portion below said gate electrode.
- **8**. The semiconductor device according to claim **5**, wherein said $Al_xGa_{1-x}N$ ($0 \le x \le 1$) electron supply layer is thinner in thickness at a portion below said source electrode and said drain electrode than at a portion below said gate electrode.
- 9. The semiconductor device according to claim 1, wherein said substrate is a silicon carbide substrate having a resistivity of $1\times10^6~\Omega$ ·cm or more.
- 10. The semiconductor device according to claim 1, wherein said substrate is a conductive substrate having a resistivity of $1\times10^5~\Omega$ cm or less.
- 11. A method for manufacturing a semiconductor device, comprising the steps of:
 - forming at least an n-type semiconductor layer or an undoped layer on a substrate;
 - forming a tantalum layer, an aluminum layer, and a metal layer made of any one material of tantalum, nickel, palladium, and molybdenum in order on said n-type semiconductor layer or said undoped semiconductor layer; and

annealing at temperatures lower than 600° C.

* * * * *